COMPARISON OF COHOMOLOGICAL EIGENVARIETIES
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ABSTRACT. We prove that Emerton’s completed cohomology and Ash-Stevens overconvergent co-
homology produce isomorphic eigenvarieties. More specifically, we show that Fu’s derived Emerton-
Jacquet functors of completed cohomology and Ash—Stevens—Hansen’s overconvergent cohomology
are quasi-isomorphic as complexes of coherent sheaves. The proof proceeds by working with homol-
ogy and explicitly comparing various coefficient systems involving distribution algebras, and uses the
solid formalism of Clausen—Scholze. We further equate both approaches with a version of p-arithmetic
homology. As a first application, the triangulation of Galois representations over Fu’s eigenvarieties for
GL,,r for F' a CM field extends to overconvergent cohomology, resolving many cases of Hansen’s
original conjecture.

1. INTRODUCTION

The theory of eigenvarieties, that is of families of p-adic automorphic forms, was initiated by the
seminal papers [Col97, CM98] by Coleman and Coleman—Mazur. Since then, a plethora of different
constructions have been given. Within these, one can spot two main types of constructions: the ones
which, following Coleman and Coleman—Mazur, use coherent cohomology of Shimura varieties, and
the ones that use singular cohomology of locally symmetric spaces in some form. This latter group of
constructions again divides into two main types: the ones using cohomology of certain types of locally
analytic function or distribution modules, originating in unpublished work of Stevens and further
developed in [AS, Han17, Urb11, Che04, Loe11], and the construction of Emerton based on his notion
of completed cohomology and the locally analytic Jacquet functor [Eme06b, Fu22]. Compared to
constructions relying on Shimura varieties, the constructions using cohomology of locally symmetric
spaces have the advantage that they can be defined for essentially any reductive group G/Q.

An early theme, originating with Chenevier’s remarkable interpolation of the Jacquet—-Langlands
correspondence [Che05], is to compare different eigenvariety constructions. Chenevier’s idea, which
was further developed in [BC09, Han17, IN19b], is that the eigenvarieties themselves are very rigid. In
particular, (iso)morphisms of eigenvarieties can essentially be constructed as long as one can match
up (Zariski dense) set of points on them (in a precise technical way). This technique works really
to prove that different eigenvariety constructions for the same group yield the same eigenvariety,
as long as these eigenvarieties have dense sets of points corresponding to classical automorphic
representations. This condition is essentially equivalent to the group having defect 0, and fails for
large classes of groups, such as Res(g GL,,/p forn > 3.

The current paper deals with a more refined question. In essence, the important output of every
eigenvariety construction is a coherent sheaf .# on the character variety T of the maximal torus T C
Gq,, which carries an action of the Hecke operators. The eigenvariety is then, by construction, the
relative spectrum of the Hecke operators over T (viewed as a subalgebra of End+(.#)). The sheaf .#

should be view as the sheaf of finite slope eigenforms for G' (with regard to the particular construction
1
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that has been used). Thus, instead of asking if the eigenvarieties for two such constructions agree,
one might ask if they produce the same M. This is a stronger statement, in the sense that we do not
expect it to hold even if the underlying eigenvarieties are isomorphic. For example, for G = GLy q,
the coherent cohomology construction of Coleman—Mazur genuinely produces a different sheaf than
the singular cohomology constructions of Ash—Stevens and Emerton, and comparing the two seems
is an interesting problem involving p-adic Hodge theory.

Our main theorem here is the following, loosely stated (see Theorem 4.3.10 and discussion after):

Theorem 1.0.1. For any reductive group G /Q which is quasisplit at p, the eigenvariety construc-
tion of Ash—Stevens—Hansen using overconvergent cohomology of distribution modules produce the
same coherent sheaf as that of Fu’s ‘derived’ version of Emerton’s construction. In particular, the
corresponding eigenvarieties are isomorphic.

As far as we know, this is the first theorem comparing the sheaves, and the first general proof that
eigenvarieties are isomorphic beyond the situation when classical points are dense'. Since 7 is quasi-
Stein, the sheaf .# is determined by its global sections. As a by-product of our method, we also prove

the following result.

Theorem 1.0.2. In the setting of Theorem 1.0.1, .4 can be written as the p-arithmetic homology of
an explicit coefficient system.

This relates the construction to the approach of [Tar23] using p-arithmetic homology. We regard
our results as a unification of the different theories of eigenvarieties constructed from singular co-
homology. As a sample application, we note that the triangulinity result for the family of Galois
representations on Fu’s eigenvarieties for GL,, over CM fields [McD25] immediately translate to the
family of Galois representations on the corresponding overconvergent cohomology eigenvariety, con-
structed in [JN19a]. This implies the original [Han17, Conjecture 1.2.2] in many cases for CM fields.

Another motivation is that these constructions seemingly have different technical benefits. Emer-
ton’s completed cohomology approach has often been better for relating eigenvarieties to Galois rep-
resentations, especially when coupled with patching (see [BHS17, BHS19]). On the other hand,
overconvergent (co)homology has been easier to relate to classical cohomology, which can be used
to bound the dimension of certain components on eigenvarieties. Having both theories can be quite
useful: [McD25, §2] applies techniques from overconvergent cohomology to control Fu’s boundary
eigenvarieties, but stops short of a full comparison. In particular, various key calculations of loc. cit.
are subsumed by Theorem 1.0.1.

The proof of our theorem may be described as a direct computation. In some sense, the key step is to
use a result of Hill [Hil10] to rewrite completed cohomology as the cohomology of a big local system
at finite level, and then start computing from there. This strategy was observed by Hansen more than
a decade ago. Nevertheless, the computations from there are quite delicate, especially when it comes

ITo be precise, it is the second theorem of its kind: In [Tar23], one of us (G.T.) introduced a new eigenvariety construction
based on p-arithmetic homology of locally analytic parabolic inductions, and proved the analogue of our theorem comparing
it to Hansen’s construction using overconvergent homology of locally analytic function modules. Our theorem is then the
first comparing two previously defined constructions.

2A result of this kind, but only pointwise and in the special case when G is compact modulo center at infinity, was proved
by Loeffler [Loell].
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to extracting finite slope subspaces in both theories® We note that the theorem needs Fu’s version of
Emerton’s originally construction, and thus a satisfactory theorem could not be proven before [Fu22].
We have also benefited from the approach to p-adic functional analysis using solid abelian groups
([CS19], [Bos23, Appendix A], [RIRC22]). In particular, we rephrase Fu’s construction using solid
functional analysis as a key conceptual step in our proof, though we have stopped short of trying to
properly define a Jacquet functor in the solid framework.

The structure of the paper is as follows: Section 2 recalls preliminaries on reductive groups, locally
symmetric spaces and completed cohomology. Section 3 then recalls the two eigenvariety construc-
tions that we wish to compare, and section 4 proves the main theorem. We give a few direct appli-
cations in section 5, and finally an appendix recalls the solid functional analysis that we need for our
arguments.

1.1. Notation and conventions. We follow Weibel’s book for conventions on homological algebra.
In particular, we mainly use chain complexes and homological numbering conventions.

If H is a compact p-adic Lie group, let O[[H]] = W, O[H/H'] be the Iwasawa algebra. For
a general p-adic Lie group G' with an open compact subgroup H C G, we set O[[G]] := O[G] ®p\n
O[[H]]. For any locally compact p-adic analytic manifold X we set D(X) = (C'*(X, K))" be the
distribution algebra, the strong dual of the space of locally analytic functions on G. If H is an abelian

p-adic Lie group, then let H be the rigid space of continuous characters of H, so it represents the
functor Sp(A) — Homeont (H, A™).

For V a solid K -vector space, we set V" := Hom(V, K). When V is a locally convex topological
vector space, V'V will denote the strong dual.

Acknowledgments. C.J. wishes to thank David Hansen for generously sharing his ideas about the
relation between completed and overconvergent cohomology many years ago, and for earlier collab-
orations on the problem. V.M. would like to thank Richard Taylor for help conversations. C.J. was
supported by Vetenskapsradet Grants 2020-05016, ‘Geometric structures in the p-adic Langlands pro-
gram’ and 2024-05561, ‘Generalizations of Shimura varieties’, during the work on this paper. V.M.
was supported by NSF Graduate Research Fellowship grant DGE-1656518 during part of the work on
this paper.

2. PRELIMINARIES

We fix a finite extension K /(Q,, which will be our coefficient field throughout this paper. The ring
of integers of K will be denoted by O (or possibly O, if there is a risk of confusion), and w € O
will denote a uniformizer.

2.1. Groups and locally symmetric spaces. Throughout this paper, G will be a connected reductive
group over (Q which is quasisplit at p. We will need some local considerations at p and at co, and to
define various spaces attached to G.

3In fact, [Fu22, Theorem 5.2] previously related completed and overconvergent cohomology in some sense, but crucially
did not address the Hecke actions at p. See also [EGH23, 9.6.7, 9.6.16, 9.6.29], which assert equivariance for the Hecke
action at p, but without proof.
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We start at oo. Let G(R)™ denote the identity component of G(R) and set G(Q)" = G(Q) N
G(R)". We let K. € G(R)™" be a maximal compact subgroup and let A be the maximal Q-split
torus in the center of G. Moreover, we set Xoo = G(R)"T/(A(R)"K,), and let X o, be the Borel—
Serre bordification of X, [BS73], which carries a left action by G(Q)™.

Next, we turn to p, where we need more notation. We will let G := G(Q,) throughout. Since G
is quasisplit at p, we can (and will) fix a Borel subgroup B C Gg, and we let B = TN be a Levi
decomposition, with opposite B = TN. For any algebraic subgroup scheme H C G, written in
bold, the corresponding non-bold letter H will be used to denote H(Q,). Let S C T be a maximal
split torus. We will let I denote a well chosen Iwahori subgroup of G, with Iwahori decomposition

I = N1TyNy
with respect to B. Moreover, put
TH={teT|tN;t7! C Ny}
and
TP = {t €T |tNit~! C Ny}
We have t ' Not C N fort € TF and t ' Nyt C N; for t € TP,

Next, let X, be the (enlarged) Bruhat-Tits building of G' over Q,. We recall a few facts about X,
that we will need. First, X, carries a left action of G and a G-invariant metric d. Moreover, X, is
contractible and any two points in X, are connected by a unique geodesic [BT72, §2.5]. In particular,
for a,b € X,, we may consider the renormalized geodesic j,; : [0,1] — X, from a to b. Finally,
given any compact subgroup K, C G, there is a point o € X, which is fixed by all elements of K.

Next, we define the locally symmetric spaces that we will use. Given a compact open subgroup
KP C G(AP™>), we define

X :=G(Q)"\Xp x G(A®)/KP, X := G(Q)"\ X0 x G(A®)/K?
and
X, = G(Q)"\ X, x X, x G(A™)/K?, ?p = G(Q)"\ X5 x X, x G(A®)/KP.

Here we equip G(A°) with the discrete topology rather than its locally profinite topology, so that
the maps X, x G(A>®) — X, etc., are all covering maps. The action of G(Q)™ is always diagonal
(from the left) and KP acts by right translation on G(A°°) and trivially on the other components. We
remark that X', X, X, and X, all carry right actions of G, induced by right translation on G.(A*).

2.2. Homology and cohomology. If Y is any topological space, we let Co(Y') denote the complex
of singular chains of Y. Since X o, \ X is the boundary of the topological manifold with boundary
X oo, the inclusion X, — X is a homotopy equivalence. It follows that Cy(X) — Co(X) and
Co(X,) — Co(X}) are G-chain homotopy equivalences. Moreover, they are also equivariant for the
action of Hecke operators away from p. Let us take a moment to recall the construction of Hecke
operators in an abstract setting that will be useful for us.

Definition 2.2.1. Let I be a group with a subgroup H C I'. Assume further that A C I' is a
submonoid containing H making (A, H) into a Hecke pair (meaning that H and § Hé~ ' are com-
mensurable for all § € A). Then, if M is a right I"-module and NV is a left A-module, the formula

Us(m@n) =Y _ md;* @ dn,
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where HOH = | |; Hd;, defines an endomorphism Us of M ®gz) IV by linear extension which is
independent of the choice of double coset representatives d; and only depends on the double coset
HéH.

We note that if fo; : M — M’ is I'-equivariant and fy : N — N’ is A-equivariant, then
f=f®fn: Mz N — M @z N satisfies f o Us = Us o f forall § € A. Moreover, the
actions of the different Us are compatible in the sense that they form a left action of the Hecke algebra
T(A, H) attached to the pair (A, H)*. We will only be interested in the following two cases:

(WI'=G,H=Tand A =IT"I,and
2) T = A = G(AP*>) and H = K.

Case (1) will be used mostly frequently in the paper. In that case, the Hecke algebra is well known
to be commutative; we record this as a proposition.

Proposition 2.2.2. Suppose that we are in case (1) above. Then we have [IsI| = [ItI] = Istl for
all s,t € T™. In particular, the Hecke algebra T(ITVI, 1) is isomorphic to the monoid algebra
Z|T* /Ty, and hence commutative.

Proof. Give a reference/proof in this generality. O

Case (2) will only be used to construct Hecke operators away from p on the singular chain com-
plexes above. We indicate the construction on C4 (X ); the actions on Coe(X), Ce(X,) and Co(X),) are
constructed in the same way. The space X is the quotient of X’ := G(Q)"\ X0 X G(A™) by the
free action of KP. The natural map

C.(X,) ®Z[Kp] 7, — C.(X)

is then an isomorphism®. Now C,(X”) carries a right action of G(A>), so by using the trivial action
of G(AP*°) on Z we get a (left) Hecke action of T(G(AP>°), KP) on C,(X’) by Definition 2.2.1.

Let us now recall the definition p-arithmetic (co)homology in the adelic setting from [Tar23]. Let
K, C G be any compact open subgroup. We recall the construction of a Hecke- and K -equivariant
chain homotopy equivalence between Co(X) and Co(X,) from [Tar23, §5.2]. First, we have the
projection map

i X x Xp X G(A®) = X oo x G(A®),
which is G(Q)" x G(A>)-equivariant. Now choose o € X, which is fixed by all elements of K,
and consider the map

ha : Xoo X G(A®) = X o X X, x G(A®)
given by hq(z,9) = (2, gpev, g), where g, is the p-component of g. One checks directly that this is
G(Q)" x G(AP™) x K,-equivariant, and that f o h, is the identity. Moreover, the map

Hpy: Xoo x Xp x G(A®) x [0,1] = X oo X Xp x G(A™)
givenby Hy(2,¢,9,t) = (2, jg.a(t), g) isa G(Q)T x G(AP*>°) x K ,-equivariant homotopy from the

identity to hy, o f (recall from §2.1 that j, ,, is the renormalized geodesic from g to ). It follows that

4As always, this is the algebra of bi-H-invariant functions on A which are supported on finitely many double cosets,
with convolution as multiplication.
SRecall that, if X is a topological space with a free right action of a discrete group K, then C (X/K) = Co(X) ®z(K) 2.
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f induces a Hecke- and K,-equivariant chain homotopy equivalence from Cy (X)) to Co(X), with
inverse (induced by) h,.

We now recall the definitions of arithmetic and p-arithmetic (co)homology.

Definition 2.2.3. Let M be a complex of left K},-modules, and let N be a complex of right K-
modules. Set K = KP K,

(1) We define the arithmetic homology of A to be the homology H,.(K, M) of the complex
Co(K, M) := Co(X) @éw M.
(2) We define the arithmetic cohomology of IV to be the cohomology H* (K, N) of the complex
C*(K, N) := RHomg g 1(Ce(X), N).
Definition 2.2.4. Let M be a complex of left G-modules, and let /N be a complex of right G-modules.

(1) We define the p-arithmetic homology of M to be the homology H,(K?, M) of the complex
Co(KP, M) := Co(Xy) @1 M.

(2) We define the p-arithmetic cohomology of N to be the cohomology H*(KP?, N) of the com-
plex C*(KP, N) := RHomy)(Ce(Xp), N).

Note that we make no assumption on the action of G on X}, or K, on X" being free. If G acts freely
on A, then Co(X,) is a (bounded above) complex of free Z[G]-modules (this will be true for K7
sufficiently small). Similarly, if K, acts freely on X, then Co(X) is a (bounded above) complex of
free Z[K,]-modules. When the actions are free, we will use Cy (K?, M) to denote the actual complex
Co(Xp) @7/ M, and similarly for the other notations.

We can make similar constructions for Borel-Moore and boundary homology instead. Letting
0Xoo = Xoo \ X
be the boundary of the Borel-Serre bordification, we may define
0X = G(Q)T\0X 4 x G(A®)/KP
and
0X, = G(Q)"\0Xx x X, x G(A®)/KP.
The complexes Co(0X) and Co(0X),) then have right G-actions, and, with M, N and K, as in
Definitions 2.2.3 and 2.2.4, respectively, we define
CJ(K, M) = Ca(0X) @75 1 M, CH(K, N) = RHomgx,1(Ce(0X), N)
and
CI(KP, M) = Co(0%,) @) M, C3(KP,N) = RHomyx,|(Co(DX,), N).

To define Borel-Moore homology and compactly supported cohomology, we define oM LX ) to be
the cone of the map Co(0X) — Co(X), and CEM(X,,) to be the cone of Co(9X,) — Co(X ). With
M, N and K, as above, we then define

CPM(K, M) = CPM(X) @7 ) M, C2(K,N) = RHomg, ) (CY(X), N)
and
CQBM(Kpa M) = CQBM(XP) ®§[Kp] M, C(:(vaN) = RHomZ[Kp](CoBM(XP)a N)

To finish this subsection, we recall the comparison between arithmetic and p-arithmetic (co)homology.
The maps f, h, and H,, all preserve the boundary (indeed, they restrict to the identity on X o) and
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hence f induces a Hecke- and K),-equivariant chain homotopy equivalence C,(0X,) — Co(0X)
which sits in a commutative square

Ce(0X,) —=C, (?p)

A
Co(0X) —— Co(X),

where the horizontal maps are induced by the inclusions. It follows that f induces a Hecke- and K-
equivariant chain homotopy equivalence CPM (X,) — CBM (X) as well. We then have the following
comparison result.

Proposition 2.2.5. Let ? € {(), BM,c,d}, let M be a complex of left K,-modules, and let N be a
complex of right K,-modules. Then we have canonical Hecke-equivariant isomorphisms C! (K, M) =
C!(KP,Z[G] ®z(k,) M) and C3 (K, N) = C3(KP?,Homy g, |(Z[G], N)) in the derived category of

abelian groups.

Proof. When ? = () this is [INWE25, Proposition 6.3.3] (which is a special case of [Tar23, Prop. 5.2.2]),
but the proof there works in general. U

2.3. Borel-Serre complexes. Next, we discuss the finiteness properties of arithmetic (co)homology®.
In this paper, we will mostly work with a fixed level at p, so our discussion will reflect this choice.
Namely, we fix K, € G compact open, and we fix a compact open K ;’m C G(AP*) such that
K, acts freely on X K?, - The manifold with corners X’ K, /K, is compact and homeomorphic to a
smooth manifold with boundary by [BS73, Appendix]. In particular, it can be finitely triangulated in
such a way that the boundary is a subcomplex [Mun66, Theorem 10.6]. The homotopy lifting property
allows us to pull back these triangulations to get K ,-equivariant triangulations of X x» and O Xf» for
any KP C K fm. Taking simplicial chains, we get bounded complexes C2% (X g») and OB (0X»)
whose terms are finite free right K)-modules. They sit in a commutative diagram

C.Bs(a.)([{p) e C.BS(?KP) _— C.BM7BS(XKP)

| | |

Co(0Xkr) Co(Xr) COM(Xkr),

where, in the left square, the horizontal maps are induced by the inclusion of the boundary and the
vertical maps are the inclusions of simplicial chains into singular chains (which are chain homo-
topy equivalences), and whole diagram is obtained by taking the cone of the left square. All maps
are Hecke- and K,-equivariant. When K? C K ?ix is normal, these complexes carry natural right

K Jei ./ KP-actions and the maps are equivariant for these actions.

Now let M be a complex of left K,-modules, and let NV be a complex of right K,-modules. Let
KP be arbitrary and put K = K?K,. Choose an open subgroup K} C K? N Kﬁm that is normal K.
We set

CI5(K,M) = (CP?(X) ®£[Kp} M) @zixr /K0 Z

6p—alrithmetic (co)homology satisfies similar finiteness properties, but we will not need them.
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and
Chs(K,N) := RT(K”/Kf, RHomgx, ) (C7%(X), N)).

This is independent of the choice of K, and when K C K ?m these complexes are bounded with
terms isomorphic to a finite number of copies of M (or N). If M is a Q-vector space (which it
will almost always be in this paper) and KP? is arbitrary, then the higher group (co)homology groups
vanish and we again get bounded complexes, with terms now isomorphic to direct summands of a
finite number of copies of M (or V). Finally, we remark that the analogous definitions and remarks
apply to boundary (co)homology and Borel-Moore homology/compactly supported cohomology.

2.4. Completed homology. Let us now discuss completed homology. Let £/Q), be a finite exten-
sion with ring of integers . By definition, completed homology for G with tame level K? and
O-coefficients is

L m H. (KK, /

where K, runs over all compact open subgroups of G. It is a right O[G]-module, where O[G]
is defined as in [Sho20, Proposition 3.2] (denoted by O(G) there). We can define boundary and
Borel-Moore completed homology in the same way, replacing ordinary homology by boundary and
Borel-Moore homology, respectively.

Proposition 2.4.1. Let K = KPK,, C G(A™) be a compact open subgroup.

(1) The complex Co(K, O[K,]) with its natural right O[Kp|-module structure (and Hecke ac-
tion) computes H, (KP) with its right O[ K} ]-module structure (and Hecke action).

(2) The complex Co( KP, O[G]) with its natural right O[G]-module structure (and Hecke action)
computes H,(KP) with its right O[G]-module structure (and Hecke action).

The analogous statements for boundary and Borel-Moore completed homology hold.

Proof. For ordinary completed homology, part (2) is [JNWE2S5, Proposition 6.3.5] (but originally
proved working on this paper), and part (1) is well known (and proved en route to part (2)). The
proofs for ordinary completed homology work verbatim for boundary and Borel-Moore completed
homology. U

We recall from [JNWE25, Remark 6.3.6] that
Co(KP, O[G]) = Co(Xy) ®7g) OlG] = Co(X,) @z OG],

so we may treat Cy (K?, O[G]) as a genuine complex, which we will denote by C,. Similar remarks
apply to boundary and Borel-Moore homology, and we denote these complexes by C? and CBM
respectively.

Let us now consider the Hecke action away from p. By the construction in [GN22, §2.1.10], the
unramified Hecke action on C,, viewed as endomorphisms in the derived category, factors through
the action of a ‘big” Hecke algebra T = T(KP). The same constructions apply to boundary and
Borel-Moore homology. We record the following universality result for p-arithmetic (co)homology
of O[G]-modules.

Proposition 2.4.2. Let M be a complex of left O[G]-modules, and let N be a complex of right O[G]-
modules.
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(1) We have Co(KP, M) = Cs ®é[[G}] M. Moreover, the unramified Hecke action factors through
a homomorphism T — End paiod(0)) (Ce(KP, M)).

(2) We have C*(K?, N) = RHomp(g)(Ce, N). Moreover, the unramified Hecke action factors
through a homomorphism T — End pvoa(0)) (C*(KP, N)).

The analogous statements for boundary and Borel-Moore homology hold.

Proof. For ordinary (co)homology this is [JNWE25, Proposition 6.3.7], but the proof applies in gen-
eral. O

3. EIGENVARIETY CONSTRUCTIONS

In this section we will recall the two eigenvariety constructions that we will compare; Emerton’s
construction (in its derived form, due to Fu), and overconvergent (co)homology.

3.1. The Jacquet functor and the definition of the eigenvariety. In this subsection we recall Emer-
ton’s construction of eigenvarieties from [Eme06b], using his Jacquet functor [Eme06a], and a variant
of this construction. We give two definitions of Jacquet functors: one is abstract, and the other is
slightly more hands on and due to Fu (and for which we can define eigenvarieties). We defer the
comparison of these definitions to Section 4. From now on, we assume that G is quasi-split at p
and use the notation for such groups. While Emerton works in considerable generality, it will be
most convenient for us to only define his functors for the cases we need.

We start by recalling the dual Jacquet functor for the Borel subgroup B, and comment on its relation
to the usual definition. Let C be a complex of solid D(G)-modules. First we consider the homology
C, ®%( No) K, where Ny C N(Q,) is an open compact subgroup of the unipotent radical N C B

(this choice of Ny does not affect the construction). This complex admits an action of the monoid 7™+

via the formula
C-z:= Z enz"t.
n€Np /21 Noz
Then the Jacquet functor is a composition of two functors

TE(Ca) i= (Co @D ny) K) @Ry OT),

where 7T is the character variety of T = T(Qp). Plugging in the the complex Cy = Co(KPI, D(I))
(naturally a complex of D(G)-modules), we have a definition of the (dual) Jacquet functor of com-
pleted homology Jz(C,), which is a complex of modules over O(f) and with an action of the big
Hecke algebra T = T(KP).

Following Fu [Fu22], we can also give a different definition of derived Jacquet functors of com-
pleted homology which is more directly related to topological vector spaces.” Now set CES :=
CBS(KPI, D(I)) for a fixed choice of triangulation. This complex does not admit an action of G
on the nose, but admits an /-equivariant homotopy equivalence to a complex Co := C(KPI, D(I)),

1
which does have a G-action! Fixing homotopy inverses CEP% ——= C, and t € TP, then the
P

TWe work with homology, whereas [Fu22] works with cohomology. They are equivalent by [McD25, Corollary 2.10].
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No-coinvariants C25(KPI, D(I)y,) := CES(KPI, D(I) ®%(No) K) admits a right action of ¢ via
the formula
c-U;:= Z Cn(iot_lop).
n€Np/t—1 Not
With this preparation, Fu then defines his dual Jacquet functors via

T5pCs> = O (KPI, D(I)n,) @y A,

where A = K{{t*'}}. Let Ty C T be a maximal compact subgroup and setting W := T, the so-
called weight space. Then Fu moreover showed [Fu22, Proposition 3.20] that JéFuC?S is a complex
of coadmissible modules over OOW)®@gA ~ O(W x G,,), and thus are (the global sections of)
coherent sheaves M, over W X Gy, also equipped with an action of T. In fact the homology groups
H;(M,) are in fact coadmissible O(T’)-modules by [Fu22, Lemma 3.19].

Remark 3.1.1. Typically Emerton’s Jacquet functor is defined on (certain) locally analytic representa-
tions of G as a composition V s Vo — (VNo)e = J5(V), where (U)gs := HomK[Tﬂ(Can(’f, K),U).
In the solid setting we could simply try to define Uy, := Homy (A,U). In our cases of interest (but
unclear more generally), it turns out that W ®1D<[t] A ~ Hom K] (A, WYV, using [RIRC22, Theorem

3.40] along with Lemma 3.1.3. and thus the above construction is formally dual to Jg(V'), so our
decision to work on the dual side is mainly out of convenience.

We can use this second construction to define an eigenvariety. To get an honest Hecke alge-
bra action on a module, we need to take the homology H.(M,). Consider the map ¢» : T —
Endoowx,,)(D; Hi(Ma,)), and let A be the O(W x G, )-algebra by the im(¢)), which is a co-
herent sheaf of algebras over W x G,,,. We also let A™ be the quotient sheaf of reduced algebras.
Then we define Fu’s eigenvariety via the relative spectrum

Eru(KP) == Spyyscg,, (A™Y).
If we only consider the Hecke action on H;(M,), we denote the associated eigenvariety by &% (KP).
Remark 3.1.2. The algebra A is the same regardless of taking the abstract Hecke algebra T* or the big

Hecke algebra T°(KP). See [McD25, Remark 2.33], with the main point being that T® — T (KP)
is dense, and that A is locally on its support finite over V.

We now justify that CPS(KPI, D(I)y,) ®9<m A = CBS(KPI, D(I)n,)®kpyA. Recall from
[RIRC22, Lemma 3.24] that the map V' +— V' (x)op induces an exact equivalence between solid and
classical Frechet spaces, with V' = V(x);op. On the level of topological vector spaces, Fu’s Jacquet

functors take the form CBS(KPI, D(I)y,)® K[ A, where D(I) N, denotes the Hausdorff quotient of
the Ny-coinvariants. We will use the following lemma, which will also be used in §4.

Lemma 3.1.3. Let R be a Noetherian Banach K -algebra and let M be a Banach R-module. Assume
thatT : M — M is a compact R-linear operator. Then id—T is a Fredholm operator, i.e. Ker(id—T)
and Coker (id — T') are a finitely generated R-modules and Im(id — T') is closed.

Proof. Throughout this proof we use the canonical topology on finitely generated R-modules and its
standard properties, as recalled in §A. By compactness of T', we can write 7' = F' 4+ E, where F' is
a finite rank operator and E has operator norm < 1. Then id — E is invertible and N := Ker(F') is
closed with the quotient M /N being finitely generated. Note that id — E and id — T agree on N, so if
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= (id—T)(N) = (id— E)(N), then M /N’ is also finitely generated. Since N’ C Im(id—T) C
M, it follows that Im(id — T) is closed. The statement about finite generation then follows from
applying the Snake lemma to

0 N M M/N 0,
0 N’ M M/N' ——=0

where the vertical maps are (induced by) id — 7', noting that the first vertical map is an isomorphism.
O
The following related lemma will also be used in §4.

Lemma 3.1.4. Use the setup from Lemma 3.1.3, and assume that R — S is a map of Noether-
ian Banach K-algebras. Write —g for base change to S, i.e. applying — ®% S. Then we have
Coker(idpy — T') g = Coker(idyrg — Ts).

Proof. Cokernels commute with left adjoints, so Coker(idy;—1") s = Coker(idpry—Ts) follows. [

We can now prove that our solid version of Fu’s construction agrees with the original one.

Proposition 3.1.5. There is an isomorphism CE5(KPI, D(I)No)@)?([t]A ~ CBS(KPI,D(I)n, )®K[t} A,
and similarly for Borel-Moore and boundary homology.

Proof. 1t suffices to show:
(1) D(I)No = D(I) ®%(NO) K
2) (D) ny) '@ kA =~ (D) ny)* @51y As

where the K[t]-module structure need not come from the conjugation action, but such that ¢ is still a
limit of compact operators.

For (1) we reduce to the Banach case. We have by definition that D(/ &_ m D*(I)n,, Where
D3(I)n, ~ (C¥(I,K)No)V is the dual of s-analytic functions. Then a key fact [Lee23, Lemma
2.3] is that D*(I)x, needs no Hausdorff closure. Interpreted differently, choosing ni,...,n, a set

of topological generators for Ny, the presentation D*([)®" £ ps (I) — D*(I)n, — 0, where
RO0®1) = > ,(6n; ®1 — 6 ® 1) is in fact a strict exact sequence. The same sequence (but on
the level of solid vector spaces) also presents D*(I)" — D*(I) — D*(I) ®%s( No) K- Then since

the equivalence V' +— V respects strict exact sequences, we get that D*([), ~ D*(I) ®%S( No) K.
Passing to the projective limit over s gives D (1), ~ D(I) ®%( No) K

For (2) we now show that D(I)n, = K] A(*)top =~ D(I) N, ® K[ A By definition, the right hand
is defined to be the Hausdorff quotient of the cokernel of the map (U ® 1 — 1 ®t) : D(I)n,®A —
D(I)n,®A. In the solid setting, the analogous presentation holds for D(I)x, ®ID<M A. Moreover,
writing D(I) N, ® A = L D*(I)n,® K[ As (which holds by the Mittag-Leffler property), each
DS(I)NO@)K[]A is presented by (U R1I-1® ) : DS(I)N()@KA — DS(I)NO(X)KAS, which
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has closed image by Lemma 3.1.3. Then the same reasoning to (1) gives D*(I)x;, ®%[t] Ay ~
D*(I)n, ® i As, and passing to the limit yields (2). O

3.2. Eigenvarieties from overconvergent homology. In this section, we recall the construction of
eigenvarieties from overconvergent (co)homology, developed in [AS, Urb11, Han17]. This construc-
tion involves some choices, leading to many variants. The main choices are to use either cohomology
or homology, and to use either locally analytic function modules or locally analytic distribution mod-
ules. In some sense these choices are dual to one another; see e.g. [Bel21, Theorem II1.3.11] for
a general form of Poincaré duality, and [Han17, Proposition 2.2.1] for the duality between function
modules and distribution modules. Moreover, most references use smaller locally symmetric spaces
than the ones from §2.1; they take the quotient of G(R)™* by K and the whole connected part Z(R) ™"
of the center. Here, we will use homology and distribution modules, and the locally symmetric spaces
from §2.1; the main result of this paper is that this variant precisely coincides with Fu’s construction.
The precise construction we will use is that of [JN19a], since the distribution modules used there are
orthonormalizable and commute with arbitrary base change, which turns out to be convenient (one
could also use [Gul19]) later on in the comparison.

Let us now briefly recall the eigenvariety construction from [JN19a] (but only over Q,), adapted
as mentioned above. Recall that W = fo denotes the weight space. To each affinoid open 2 C W
and each s € (0, 1) sufficiently close to 1 (depending on €2), [JN19a, §3.3] constructs a Banach
O(£2)-module D¢, such that

e Dy, is orthonormalizable;
e A = IT*] acts on D§, from the left, and each ¢ € TP" acts as a compact operator;
e When r < s we have D¢, C Dy, compatibly with the actions of A;

o If Q' C Q is another affinoid open, then there are canonical isomorphisms Dg@o(ﬂ)(’)(ﬂ’ ) &
Dé(ﬂ,) compatible with changing s and the actions of A.
From this, the eigenvariety construction goes as follows (see [JN19a, §4.1]): Let K = KPI, choose
an element t € TP, and consider the chain homotopic complexes

Cuo(K, D§) ~ CE3(K, D))

for varying  and s. We have a Hecke action on C,(K, Dg)), which we can transfer element by
element to CP(K, Dg,) via the chain homotopy equivalence (as in §3.1). In particular, U; acts a
compact operator on each of the (finitely many) terms of C2° (K, Dg,), all of which satisfies Buzzard’s
property (Pr). Thus, we may define the Fredholm series F € O(Q2 x Al) of Uy acting on the direct
sum C, (K, D§) of the CPS(K, D). One then proves that F is independent of s and is compatible
with change of €2, and hence comes from a Fredholm series F' € O(W x Al).

Having the Fredholm series F© € O(W x Al) we consider the corresponding spectral variety
Z ={F =0} CW x Al and its cover Z = U(Q,h) Zq.n, where (€, h) ranges over slope data
for Uy in the sense of [Han17]. By definition, if (€2, 2) is a slope datum then Cq (K, D)) has a slope
< h-decomposition, with slope < h-summand C, (K, Dg,)<p,, which is a bounded complex of finitely
generated projective O(£2)-modules (and hence, a fortiori, a bounded complex of finitely generated
O(Zq,5)-modules), which turns out to be independent of s. Moreover, if (€2, ) is a slope datum and
Q' C Q, then (€, h) is a slope datum and we have Co(K, D)) <n ®o(q) O(') = Co(K, Dg,)<p.
This allows us to glue the C4 (K, D§,) <, into a bounded complex %, of coherent sheaves on Z. Taking
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its homology, we obtain a graded coherent sheaf .7 (KP) on W x A', which carries an action of the
Hecke algebra. From this, one can build the eigenvariety as the relative spectrum of the Hecke algebra
as a subalgebra of Endy, 41 (J4 (KP)).

3.3. Hecke operators up to homotopy. Both constructions of eigenvarieties feature transferring
Hecke actions from one complex to another complex using a chain homotopy equivalence. Concretely
(but still somewhat imprecisely), one may describe the situation as follows: we have two complexes
B = B, and C' = (C, and a chain homotopy equivalence f : B — C, with “chain homotopy in-
verse” g : C' — B. We can then produce a map of abelian groups End(B) — End(C) by sending
U € End(B) to fUg € End(C). After passing to homology, this map respects composition, and this
is what is used in both eigenvariety constructions. Note, however, that if we choose U € End(B) and
make B and C into complexes of Z[X]-modules by letting X act by U on B and by fUg on C, then
f : B — C need not be Z[X]-linear. The goal of this section is to show that, nevertheless, B and C'
are quasi-isomorphic as complexes of Z[ X ]-modules in this situation.

Our setup is slightly more general. We let R be a solid commutative ring and we let B = B, and
C = C, be bounded below chain complexes of R-modules. As indicated above, we assume that we
have a chain homotopy equivalence f : B — C, with “chain homotopy inverse” g : C' — B. Assume
that we have a chain map U : B — B; we can then form the chain map V' : C' — C given by fUg.
Let R[X] := R ®3 Z[X] be the polynomial algebra over R in one variable X. We make B and C
into complexes of R[X]-modules by letting X act as U and V/, respectively. As mentioned above, our
goal is to show that B and C' are quasi-isomorphic as complexes of R[X]-modules.

To do this, we need to replace B and C. We make the following constructions: If M is a complex
of R-modules, we let M[X] be the complex M ®7 R[X] of R[X]-modules. Any R-linear map
h: M — N induces an R[X]-linear map h : M[X]| — N[X] concretely defined as

% %
We then have the following:
Proposition 3.3.1. We have a short exact sequence
0 — B[X]— B[X]—+B—0

of complexes of R[X|-modules, where the map B[X] — B[X] is “multiplication by X — U (i.e.
S biXE = S (b X — U(b;) X)) and the map B[X]| — B is given by >, b; X" +— > U'(by).
The analogous statement holds for C.

Proof. For injectivity of B[X]| — B[X], note that X — U is “monic” (the proof is the same as
showing that multiplication by a monic polynomial is injective). Surjectivity of B[X| — B is clear.
For exactness in middle, it is clear that the composition of the maps is 0, so it remains to prove that
the kernel is contained in the image. Consider Y1 , b;X* € B[X]. We wish to rewrite it as

n

n—1
D uiXi=(X-U)[> X7 | +e,
i=0 Jj=0
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for some cy, ..., ¢, € B. If so, then the claim follows, as ¢, mustbe >, U i(b;) (substitute X = U).

To write it like that, we expand and see that we have to solve the usual equations
Cn—1=bn,cn—2—U(cn-1) =bp—1,...,¢c0 —U(c1) = by and ¢, — U(cp) = by,

which we can do. ]

Corollary 3.3.2. B is quasi-isomorphic to the cone Bof X —U : B[X] — B[X]. Explicitly, we have
a R[X]-linear quasi-isomorphism qp : B — B given by

g8 : Bu1[X]® Bu[X] = Ba, g (D> a:X') b X7 | =) U (by).
i J J

The map pp : B — B given by pg(b) = (0,b) is an R-linear quasi-isomorphism which is inverse
to qp on homology. The analogous statements hold for C. Note that pp is a chain map (an easy
verification using the formula for the differential on B recalled below).

Proof. That gp is a quasi-isomorphism is a standard consequence of the Proposition. To see that pp
is an R-linear inverse on homology, note that gp o pp = idp. ]

At this point, let us recall that the differential of B is the map B,,_1[X] ® B,[X] — Bp_2[X] @
By,—1[X] given by the matrix
—-d 0
(U -X d> ’

where d denotes the differential on B. We can now define a map B — C by the matrix
_ (0
F= ( fUs f)
where s is a homotopy on B satisfying idg — gf = ds+ sd. The statement we desire is the following.

Proposition 3.3.3. F is a quasi-isomorphism of R[X|-modules.

Proof. First, we need to prove that F' really is a chain map. We compute

f o0 —~d 0\ _ —fd 0
fUs f)\U-X d) " \—fUsd+ f(U - X) fd

—-d 0 £ 0y _ —df 0
V—-—X d)\fUs f) \(V-X)f+dfUs df)’
We have df = fd, so to see that these are equal it remains to show that
—fUsd+ f(U—-X)=(V—-X)f+dfUs.

Since X f = fX, we can remove the terms involving X . This leaves us with showing that — fU sd +
fU =V f+dfUs. We then have

—fUsd+ fU =V f—dfUs = —fU(sd +ds) + fU(id — gf) =0
using that f and U are chain maps, V = fUg and sd + ds = id — gf.

and

To show that F' is a quasi-isomorphism, consider the sequence

BB B T4
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Since pp and g¢ are quasi-isomorphisms, it suffices to show that the composition is a quasi-isomorphism.

We compute:
et =ac (1) () =a((45)) = 1

So gqo o F o pg = f, which is a quasi-isomorphism as desired. (|

Together with a Tor-vanishing result carried out in Section 4.2, the above work equates our two
definitions of Jacquet functors.

Corollary 3.3.4. We have an isomorphism J]\g,Fu(C?S(KpI, D(1))) ~ J5(Ce(KPI, D(I))).

Proof. Applying Proposition 3.3.3 in the case of B = CPS(KPI, D(I)n,) and C = Co(KPI, D(I)y,),
we have that these complexes are K [t]-equivariantly isomorphic for a fixed ¢ € TP!. Thus we have

B ®%[Lﬂ A~ C®%[§] A~ J4(Ce(KPI,D(I))), where the second isomorphism holds since ¢ € T".

Proposition 4.2.2 then implies B®ID(’[LﬂA ~ B®%MA ~ J§ p(CO3(KPI, D(I)n,)), as required. [

4. COMPARING COMPLETED AND OVERCONVERGENT HOMOLOGY

This section proves the main comparison theorem. First, we prove some results about the derived
functors of the finite slope functor, completing the comparison of Fu’s Jacquet functors and the solid
Jacquet functor. We then compare the solid Jacquet functors to overconvergent homology. In a sense,
the strategy is straightforward: We will start with the object CES(KPI, D(I)y,) ®'[th] A from Fu’s
construction and, by direct manipulations, show that it unravels to the complex %, in the theory of
overconvergent homology.

4.1. A formula for distribution modules. Before we start manipulating CZ%(KPI, D(I)y,) ®ID(M
A, we will prove a result relating D(I)y, to the distribution modules D¢ := 1'&15 D¢, in overcon-
vergent homology. Let 2 be an open affinoid subset of weight space. Put R = O({2), a Banach K-
algebra, and let x : Ty — R* be the corresponding weight. The goal of this subsection is to show that
D(I)n, ®%(T0) R and Dq, are canonically isomorphic. As a first step, we replace D(I)y, ®'5 (1) B
by D(I) ®%( Bo) R. First we note the following: if X and Y are compact p-adic manifolds, then

D(X xY) = D(X) " D(Y).
Lemma 4.1.1. Let X be a compact p-adic manifold with a faithful right action of a compact p-adic
Lie group G. Assume that we have an isomorphism X =Y x G as right G-manifolds, where Y C X is

a closed submanifold, and assume that N C G is a closed normal subgroup with quotient H = G/N.
Then D(X) ®p, ) D(H) = D(Y x H).

Proof. Upon noting that D(X) =2 D(Y) ®" D(G) also as right D(G)-modules, this is clear from the

remark before the lemma. ]

Proposition 4.1.2. We have D(I)n;, ®%(To) R =D(I) ®%(Bo) R. More generally, D(I)n, ®%(To)
M = D(I) @DD( 5oy M for any solid D(Ty)-module M.
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Proof. The general version reduces directly to the case M = D(Tj). This case then follows from
Lemma 4.1.1 (both sides are isomorphic to D(N1 x Tp)); note that in the definition D(I)y, =
D(I) ®%( o) I we may think of K as the distribution algebra D(1) for the trivial group 1. O

Next, by definition (as recalled in §A), D(I) ®%( Bo) Tt is the coequalizer of
D(I) ®” D(By) ®” R = D(I) ®" R.
We are going to compare this to the diagram
D(I x By, R) = D(I,R),

which is R-dual to the diagram

C(I,R) = C(I x By, R),
where one map is f — ((g,b) — f(gb)) and the other is f — ((g,b) — r(b)f(g)). By definition,
the equalizer of this diagram is Ag. So, we want to do the following:

(1) Construct a commutative diagram
D(I)®" D(By) @ R —= D(I)®" R

l |
D(I x By,R) —————= D(I,R)

where the vertical arrows are isomorphisms.
(2) Show that the coequalizer of D(I x By, R) = D(I, R) is Dq (which is the R-dual of Ag).

Together, these two assertions would give the desired isomorphism D(]) ®%( Bo) R = Dq. We start
with the second one.

Lemma 4.1.3. Let H be a compact p-adic analytic group. Then C(H,R) and D(H,R) are R-
reflexive and R-duals of each other. In particular, Aq and Dq are R-reflexive, and are R-duals of
each other.

Proof. For the first part we need to equate Hom p(—, R) with the usual R-module dual. One can argue
as follows: Consider C*(H, R). Letting Ry be the unit ball for a suitable norm on R, we can write

C*(H,R) = PR = (1& P Rro /w”> [1/w].
By direct computation we then see that Hom (C*(H, R), R) is isomorphic to

(TTRo) (1/=]

with the weak topology, i.e. the topology induced from the product topology on [[ Ry. Taking

—

Homp(—, R) of this returns @ R, and this is exactly what happens on the topological side when one
takes Homp s(—, R). The difference between the weak and strong topology then goes away after
letting s — 0.

For the second part, use that Ag = C(N1, R) and D = D(N1, R). O

We then have:
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Proposition 4.1.4. The coequalizer of D(I x By, R) = D(I, R) is Dq.

Proof. To prove this, we show that Ag is not only an equalizer, but in fact a split equalizer [Stal8,
Tag 08WF]. The splitting is given as follows: We need to produce maps
C(I,R) —» Aq and C(I x By,R) — C(I,B)
satisfying the properties specified in [Stal8, Tag 08WF]. If g € I, we write g = T4b, for its Iwahori
decomposition with respect to I = N1 By. Then the function C(I, R) — Aq is given by
f = (g = k(bg) f(g))
and the map C'(I x By, R) — C(I, B) is given by
F— (g~ k(by)F(g, b;l)).

Now contravariant functors send split equalizers to (split) coequalizers, so the Lemma 4.1.3 gives the
claim. O

This finishes the proof of the second property, so we move on to the first. We want isomorphisms
D(I) ®” D(By) @~ R — D(I x By, R) and D(I) ®” R — D(I, R). These are “standard” if you
replace the solid tensor product with the usual completed tensor product, and since everything in sight
is a Fréchet space these two tensor products agree. To check the commutativity, the easiest thing is
to compute on Dirac distributions and use continuity (note that this is computation on the underlying
topological spaces). So, the two maps are given on Dirac distributions by

gRbRT = 7(9,b)
and
gRr—rg.
The maps
D(I) ®” D(By) @~ R = D(I) " R.
are givenby g @b @7 +— gb®rand g ® b®@ r +— g ® k(b)r. The two maps
D(I x By,R) = D(I,R),

are given by (g, b) — r.gband (g, b) — rk(b).g. The commutativity is then a simple check.

4.2. Derived functors of ®%[t]. To get started with C25(KPI, D(I)n,) ®ID(M A, our next goal is to
show that in fact

CI*(KPI, D(I)N,) @Ry A = CP°(KPI, D(I)n,) ®%7y A.

More generally, we will discuss how to compute the higher derived functors of — ®ID<[ A. Our starting

]
point is a solid K -vector space V which is flat for @ (over K), equipped with an endomorphism U,
making it into a solid K[t]-module. For example, any quasiseparated solid K -vector space is flat, by

[RJRC22, Lemma 3.21]. Then, just like in §3.3, one has a resolution
0—=V[t] > V[t] =V —0,
where the map sends > v;t? to " (vit*t! — U(w;)t?), and V[t] is flat for ®ID<M. We conclude that

Tor?(’[it] (V,A) =0 fori > 2 and that

Tor iy (V, A) = Ker(V[1] @5y A = VIH] @y A).
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We now want to try to make that kernel more explicit. By definition, it is given by
Z vit' ® a Z(Uit“—l ~U(v)t") ® a.
i i

We have an isomorphism V[¢] ®%[t] A=V @ A, and with respect to this the formula becomes

v@ar—vRat—UW) ® a.
When V is a Fréchet space, we can go one step further, writing V' @ A = V{{t*'}}. Then the

formula becomes ' , ,
Zvitl —> Z(UitlJrl — U(Ui)tl)-
i i

We can summarize these calculations.

Proposition 4.2.1. When V' is a Fréchet space, the elements of Tor[D(’[lt] (V, A) can be described as the
power series >, vit' € V{{t*'}} satisfying U(vit1) = v; for all i. Similarly, when V is a Banach
%ﬁ} (V, Ap) can be described as the power series Y, v;t" € V (pht, pht~1)
satisfying U (viy1) = v; for all i.

space, the elements of Tor

We can then give a criterion for the vanishing of Tor'[:'(’[i] (V, A). In fact, we can give a more precise

0,1

criterion for the vanishing of Tor K]

(V, Ap) when V is a Banach space.
Proposition 4.2.2. Assume that V is a Fréchet space with an endomorphism U.

(1) Assume that V is a Banach space and that the operator norm of U is strictly less than p".

Then Tor‘[:l(’ﬁ] (V,Ap) =0.

(2) Assume instead that V = l'mn V. is a Fréchet space written as a projective limit of Ba-
nach spaces V,, and that U arises as the limit of bounded operators U,, on the V,,. Then
0,1
TorK[t](V, A)=0.
Proof. To start, assume that V' is as in (2) (which includes V' being a Banach space as a special case).
Then we claim that
0,1 . 0,1
TorK[t](V7 A) = %n TorK[t](Vn7 Ap).
n

To see this, consider the resolution 0 — V'[t] — V[t] — V — 0 as above. Then it suffices to show:

3) Vel A=limV, @ 4,
h,n

(4) ker(V @7 A — V @ A) = limker(V, @ A, — V, @7 Ap).
h,n

Now (3) is [RJRC22, Lemma 3.28], and (4) follows from (3) and limits commuting with other limits
(the kernel in this case).

From the isomorphism Tor?{’é] (V,A) = &ith’n Torlm(ﬁ] (Vi, Ap), we see that part (2) of the propo-
sition follows from part (1), so it remains to prove part (1). Choose a norm | — | on V. By Proposition
4.2.1, Tor?(’[i} (V, Ay) is the set of 3, v;t* such that p~"v; and v_;p~" are bounded as i — +oc0, and
Up(vit1) = v; for all 7. Let X be the operator norm of U. Then we have

A" Jomepil 2 (U™ (0ma)| = il



COMPARISON OF COHOMOLOGICAL EIGENVARIETIES 19

for all i and all m > 0. But \™ - [v,pq] = (Ap~?)™ph|p=h+m)y | — 0 as m — +oo, since
A< ph and ]p_h(i+m)vi+m| is bounded. We conclude that v; = 0 for all 7, as required. ]

4.3. The Main Theorem. Our goal now is compute CZ%(D(I)y,) ®}D{[t} A in a way that directly
compares it to overconvergent homology. The starting point is the isomorphism

D(I)n, ®pzy) O() = D(I) @p g,y O(Q) = Dy
established in §4.1, where 2 C W is an affinoid open subset of weight space. The first step is the
following:

Proposition 4.3.1. We have lim | D(I)n, ®%(To) O(Q) = D(I)n,, and thus Im, Do = D(I)n,-

Proof. We prove that lim , D(I) @, 5y O(Q) = D(I)n,. As noted in §4.1, D(I) @5y O(Q) is
the split coequalizer of

D(I) @” D(By) @” O(Q) = D(I) @° O(Q).
The splittings are compatible with varying €2, so taking @Q and noting that D(Tp) = O(W) =
lim,, 0O(Q), we see that lim,, D(I) ®ID7(Bo) O(9) is the (split) coequalizer of

D(I) @” D(By) @ D(Ty) = D(I) &" D(T).
But this coequalizer is D(1) ®%( Bo) D(T}) by definition, which is D([)y, by Proposition 4.1.2. [

Next, we write Dq = @S Dg,. Our goal now is to gradually understand CBY(K, Dg) ®?{[t] Ap,.

Recall the fixed compact operator Uy on the C55 (K, Dg,). To simplify the notation, and to be able to

use t as a coordinate on G,,, we will write U := U, and forget the notation ¢ € T°°’*. With all this in
mind, consider the operator

CP3(K,Dy) @7 Ay, — CB%(K, Dg) @7 A,
which sends 6 ® a to § ® a — U(8) ® t~'a. By definition, C2S (K, D)) ®[D([t] Ay, is the cokernel of
this operator. Note that the operator is the identity minus § ® a +— U(J) ® t~'a, which is a compact
operator on the Banach O(€2;,) := O(Q) @ Aj,-module CE¥(K, Dg) @ Ay,.

Thus, CP(K, D)) ®ID<[t} Ap, is a finitely generated O(2j)-module by Lemma 3.1.3. Our next
goal is to establish compatibility when varying s, {2 and h. For 2 and h, compatibility follows from
the following lemma.

Corollary 4.3.2. (CP9(K, Dg) ®E<[t} Ap)a,n forms a coherent sheaf on W x Gyy,.

Proof. Apply Lemma 3.1.4 to the maps U ®@ t 1 : CB5 (K, D§) " A, — CP¥(K, Dg) ®" Ay, for
varying €2 and h. O

Next, we want to show independence of s for (C(Dy,) ®1D<[t} Ap)q,n- For this we revert to the stan-
dard slope decomposition techniques. One advantage of choosing the analytic distribution modules
from [JN19a] is that they commute with base change even before taking slope decompositions. In
particular, one has the following:

Corollary 4.3.3. Let k € Q be a closed point with residue field K'. Then (CP%(K, D§) ®[D([
Ap) XoQ) K'= CPS(Kv D;) ®?{[t] Ap.

1]
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Proof. Since C(Dg,) @%(Q) K' = C(Dg), this is a direct consequence of Lemma 3.1.4 O

To make this useful, we want to couple it with the relation to slope decomposition. We need a
preliminary lemma.

Lemma 4.3.4. We have Ay, ®%[t} Ap = Ap. As a consequence, M ®%[ﬂ Ap = M for any solid
Ap-module M.

Proof. Ay, ®[D([t] Ay, is the cokernel of the map ¢ : A, @7 A, — A, @ A, given by f ® g —

tf ® g— f ®@tg. Now note that A, ® Ay, is the ring of functions on the subset p~" < X, Y < p” of
G2, (with coordinates X and Y'), and in this notation ¢ is the map given by multiplication by X — Y.
Thus, the quotient is Ay, as desired.

For the final statement, note that M = M ®Eh Ay, =M ®Eh (Ap ®%[t] Ap) =M ®ID([t] A, O

Proposition 4.3.5. Let Q2 be an affinoid weight (i.e. an affinoid rigid space §2 over K with a K-map
Q — W), not necessarily open in weight space. If (0, h) is a slope datum for CB%(K, D{)), then
CB5(K, Dg) ®[D([t] Ay, =2 CBS(K, Dg) <p. In particular, both sides are independent of s.

Proof. Write M = CBS (K, Dg,) for simplicity. Then we have the slope decomposition M = M<p, @
M-, and we need to show that M~ ®%[t] Ap =0and M¢y, ®ID<M Ap =M<y,

We start by showing that M-~j ®ID<M Ayp, = 0. Note that M+, @° A, = (M ®" Ap,)s}, and that
the polynomial Q(X) = X —t~1 € O(Q)[X] has slope < h. We have Q*(X) = 1 — Xt~ ! and
hence, by the defining property of slope decompositions, Q*(U) = 1 — Ut~ ! is an automorphism of
(M ®" Ap)sp. This shows that M-, ®%[t] Ap, = 0, as desired.

It remains to show that M<y, ®1D([t] Ap = M<j,. By Lemma 4.3.4, it suffices to show that M<,

is already an Aj-module. But this is a standard property of slope decompositions arising from slope
factorizations. U

Corollary 4.3.6. The coherent sheaf (CB%(K, D) ®%[ﬂ Ap)q,n is supported on the spectral variety
of U in W X Gy, and equals the coherent sheaf constructed in the theory of overconvergent homology.
In particular, it is independent of s.

Proof. Corollary 4.3.3 and Proposition 4.3.5 show that the reduced support of (CP%(K, D§) ®ID(M

Ap)q,p agrees with the reduced spectral variety. The result follows by using the Coleman—Buzzard
cover of the spectral variety (in the slope decomposition form) and Proposition 4.3.5 again. g

At this point, it remains to study the limits over s, {2 and h. One should be a little bit careful about
the order one takes the limits in. A priori, one can start with either s or h, but the limit over €2 needs
to be taken after the limit over s. We start by taking the limit over h.

BS BS
Proposition 4.3.7. We have C;° (K, D¢ )®K[t]A lim, C§ (K, D¢§ )®K[ﬂAh and TorKM(
lim, TorK[t](CBS(K Dg), Ap) = 0. Moreover CBS (K, D{) ®ID<[] A is independent of s.

Proof. To simplify the notation, write (in this proof only) M), = CZ%(K,D§) @ A, C), =

CB5(K, Dg) ®?([t] Ay and K, = Tor'y E](CBS(K Dg,), Ap), and M, C and K for the same things

CB3(K, Dg), A)



COMPARISON OF COHOMOLOGICAL EIGENVARIETIES 21

with Ay, replaced by A. Then we have exact sequences
O-K—-M-—->M-—=C—=0

and

0— Ky — My — M, — Cp — 0.
Since M = l'glh My, we need to show that taking @h over the second displayed equation (viewed
as a system with respect to h) preserves exactness. Since l'mh preserves kernels, we already have that
K = ylnh Kj},. By Proposition 4.2.2, K; = 0 for all large enough h. Therefore, it remains to prove
that C" = lim, Cj,.

To do this, it suffices to consider h large enough so that K; = 0. Then consider the short exact
sequence
0— My — My, - Cp —0.

The maps My, — M}, have dense image for all i < ', so by topological Mittag-Leffler [RIRC22,
Lemma 3.27], R* l'£nh Mj, = O forall7 > 1 and hence C = @h C}, as desired. Independence of s

then follows since the CE%(K, D)) ®ID<M A}, are independent of s. O

We have now established short exact sequences
0— CB9(K,D§) @ A — CP9(K,D§) @° A — CPS (K, D§) R A—0
for all s and 2. We now take the limit over s.

Proposition 4.3.8. We have CE%(K, Dg) ®?([t] A= @JC’,BS(IQ D{) ®[D([t] A). In particular,

CBS(K, Dq) ®[D([t] A= (CP%(K,Dy) ®ID([t] A) for all sufficiently large s.

Proof. The maps CEPS (K, Dg) P A — CPS(K, D§)) @ A have dense image for all s < &/, so
R'lim CP%(K,Dg)@" A = 0foralli > 1. Since CJ¥(K, Do)®" A = lim (CP%(K, Dg)@" A),
the first part follows from taking the limit over s in the displayed equation before the proposition. The
second part then follows from independence of s (Proposition 4.3.7) . ([l

Finally, we take the limit over 2.

Proposition 4.3.9. We have O75(K, D(I)n,) ©gy A = lim, (CP¥(K, Do) @, A).

] pa—e)

Proof. There exists a cofinal system (£2,,),, of all 2 such that 2,, is connected and satisfy ,, C Q,,11
for all n. Then the maps CP%(K, Dq, ) @ A — CP9(K, Dq,) @ A have dense image for all
s < s, so R'lim, CBS(K,Dq) @7 A = 0forall i > 1. We have C2%(K,D(I)y,) ®" A =
lim (C25(K, Dq) @ A) by Proposition 4.3.1, so the proposition follows from taking the limit over
Qin the short exact sequence

0 — C2¥(K,Dq) ®” A — CP°(K, Do) @7 A — CP%(K, Do) @7y A — 0.

Summing up, we have proven the following:

Theorem 4.3.10. C25(K, D(I)y,) ®ID([t} A is the coadmissible O(W x G, )-module corresponding
to the coherent sheaf (CPS (K, D) ®?{[t} Ap)a.n on W x Gy, which is independent of s and is equal
to the coherent sheaf constructed via overconvergent homology.
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Proof. This is now the statement that C2 (K, D(I)y,) ®%[t} A= lim, CB3(K, Dg) ®ID<M Ap,
which we have proven. ’ U]

We now briefly summarize how all this work implies the main result. First, Proposition 3.1.5
and Corollary 3.3.4 imply (C2%(K, Dg) ®%[t] Ap)q,n computes the dual of Fu’s derived Jacquet
functors. Thus, Theorem 4.3.10 proves Theorem 1.0.1, although as referenced in Section 3.2 Ash—
Stevens—Hansen use cohomology with distribution module coefficients. An application of Poincaré
duality then gives the more direct comparison of relevant (co)homology groups.

Corollary 4.3.11. We have isomorphisms
Hi(C(K?, D(I)ng )@y A)) == HI X621 =12 (KPT, D(1) )@ ke A)
H;(CPM(KP, D(I), )@k A) = HE X012 (O (KPT, D(1) Ny )@ kg A)-

In particular the coherent sheaves defining the eigenvarieties from completed homology and (com-
pactly supported) cohomology are isomorphic.

Proof. These follow from [Spa93, Theorems 10.2 and 10.4]; see also [Bel21, Theorem 4.3.11]. O

5. FIRST APPLICATIONS
We give some initial application of our comparison theorem.

5.1. Triangulations of eigenvarieties over CM fields. The first is towards triangulations of Galois
representations on eigenvarieties for GL,, over a CM field F'. The idea is that Hansen originally
formulated such a conjecture [Han17, Conjecture 1.2.2] for eigenvarieties from overconvergent coho-
mology, while the second-named author’s recent work [McD25, Theorem 1.1] proves a result for Fu’s
eigenvarieties. We can thus use the comparison theorem to directly get results on Hansen’s original
conjecture.

We recall the context from [McD25]. Let F' be a CM field, and assume that F' O Fj contains an
imaginary quadratic subfield. Suppose p splits in . Now let m C T (KP) be a maximal ideal of the
big Hecke algebra for GL,, /F. Scholze’s work [Sch15] associates to such an m a Galois representation
Pm ¢ Galp — GL,(Fp). We call m non-Eisenstein if p,, is (absolutely) irreducible, and decomposed-
generic if p,, is decomposed-generic in the sense of Caraiani—Scholze, i.e. there is an ¢ # p such
that ¢ splits completely in F, and for each w | £ we have py,|caly,, is unramified and p,, (Frob,,) has
eigenvalues vy 1, . . . , Qi pn Satisfying awyia;}j + qil for all i, j where ¢, := #Op, /™, denotes
the size of the residue field.

Let Sléu(K P)n denote the reduced eigenvariety defined as the support of the coadmissible Hecke
module Hi(ngFh(CBS(KpI, D(I)ny)m)), and EL,(KP)y, the eigenvariety of degree i for overcon-
vergent homology localised at m. When m is non-Eisenstein, there is a mapping Sfu(Kp)m —
(Spf Rpm)l”ig X ﬁ, where R denotes the universal Galois deformation ring. In particular, for each
(z,0) € EL(KP)m(Q),), there is an associated Galois representation p, : Galp — GL,(Q,,).

Theorem 5.1.1. Hansen’s conjecture is true for any non-Eisenstein, decomposed generic point (z,0) €
Eoy (KP)m. In other words, there exists a Galois representation p, : Galp — GL,(Q,) which is tri-
anguline at all v | p of parameter ' - 6, for &' an algebraic character, and for all T : F,, — Q, we
have wt:(pz|Galy, ) = wtr(9).
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Proof. Since m is non-Eisenstein, we have 6%117 s (KP)m =~ &L (KP)m where the first space is
the analogous eigenvariety for Borel-Moore homology. Thus by the main comparison and Corol-
lary 4.3.11 we have & (K?)y o~ 5™ XKP1=4([(P) | The result thus follows from [McD25, Theorem

1.1]), the analogous result for Eglilm XK“%(Kp)m. O

5.2. p-arithmetic homology and a local-global result. In this subsection we prove Theorem 1.0.2.
In Section 4, we established that C2(K, D(I)n,) ®[D([t] A is the bounded complex of coadmissible
O(W x G,,)-modules from the theory of overconvergent homology. Moreover, CE5(K, D(I)y,) is
a complex of acyclic modules for — ®[D([t] A by Proposition 4.2.2. Thus, we have

CIS(KPT, D(I)n,) @y A = CP(KPT, D(I)ny) @y A= Co( K71, D(I)n,) @y A

~ C,(K?,D(G)n,) @E{’é] A= Co(KP,D(G)N, ®?{’[Lﬂ A)

1%

in the derived category of solid O(W x G, )-modules. In summary, we have the following result:

Theorem 5.2.1. The (graded) coherent sheaves on T produced by the eigenvariety constructions from
Section 3 are isomorphic to H.(K?, D(G)n, ®ID<’[§] A).

This result strengthens the connection of the eigenvariety to the emerging perspective on spaces of
p-adic automorphic forms via a categorical version of the p-adic local Langlands correspondence (see
[EGH23], especially Conjecture 9.6.18). We make tow further remarks in this direction. The first it
that it is desirable to compute D(G) ®ID(’[Lﬂ A more explicitly. In particular, we expect that the higher
Tors vanish, which amounts to following assertion:

Conjecture 5.2.2. Tor?(’[lt] (D(G)n,, A) = 0.

The second remark is that Theorem 5.2.1 allows one to prove a formula in the spirit of [EGH23,
Conjecture 9.6.18] in the very restricted setting of [INWE25, §6.4], where G = PGL, /Q and we
localize at a maximal ideal m of the Hecke algebra satisfying conditions (1)-(4) in loc. cit, to which
we refer for details of the setup and notation. Then Theorem 5.2.1 together with [JNWE25, Theorem
6.4.4] give with following:

Proposition 5.2.3. Assume that we are in the situation of [INWE25, §6.4]. In particular, G =
PGLy/q. Then we have

HL(KJ(N), D(G) o ® A = Ha(Z,, 7" (1) @ 1 (Fart(D(C) i, S5 A))[-2).

APPENDIX A. SOLID FUNCTIONAL ANALYSIS

In this appendix we collect various facts about p-adic functional analysis in the solid context.

A.1. Foundational conventions. In the recent literature on condensed math, two different founda-
tional settings have emerged: the original solid framework from [CS19] or the light solid framework
from Clausen—Scholze’s Analytic Stacks lectures. The choice of foundations should not matter to us
for the following reason for the following reason: Let Cond and LCond be the categories of con-
densed and light condensed sets, respectively, and let CGTop and MCGTop be the categories of
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compact resp. metrizably compactly generated topological spaces. Then we have a commutative
diagram of functors

MCGTop —— LCond
CGTop Cond

where the left vertical functor is the inclusion, the right vertical functor comes from pullback of
sheaves (light condensed sets to condensed sets for larger cutoff cardinals) and the horizontal functors
are fully faithful. It follows that MCGTop embeds fully faithfully in both condensed settings, and
so it doesn’t matter which setting we use. So, with that said, we just write “condensed” for now and
ignore the difference.

A.2. Some facts about solid vector spaces. We will work in the category of solid K -vector spaces,
writing @ for the solid tensor product and Hom for the internal Hom (over K). Given solid K-
algebra R?, the category of solid R-modules has tensor product being the coequalizer M ®% N of

Me@"Re"N= Me” N
where one arrow is given by m ® r ® n — mr ® n and the other is m ® r ® n — m ® rn, and the
internal Hom Hom (M, N) being the equalizer of

Hom(M, N) = Hom(R ®" M, N)
where one map is f — (r ® m +— rf(m)) and the otheris f — (r @ m — f(rm)).

We are repeatedly use solid tensor products over R a commutative Banach K-algebra. It will
be useful to more directly compare this to a completed tensor product. First recall from [RJRC22,
Lemma 3.24] that V' — V(x)p induces an exact equivalence between solid and classical Frechet
spaces, with V' = V() op.

Recall a Banach R-module M is called orthonormalizable it M ~ @;R for I some indexing
set. Following [GVHH25], we then call a (solid) Fréchet R-module M strongly countably Fréchet
if it is a limit of a countable inverse system {M,}>° ,, where each M, is a direct summand of an
orthonormalizable R-module with countable indexing set I, and M, 11 — M, has dense image for
all n. By [GvHH2S5, Proposition 2.4.3], any strongly countably Fréchet R-module is flat for the solid
tensor product over R.

Lemma A.1. Suppose R is a noetherian K-Banach algebra, M is a strongly countably Fréchet
R-module, and N is either a Banach or strongly countably Fréchet R-module. Then M ®E N ~

M®&gN.

Proof. When M, N are Banach modules and M is flat for the solid tensor product over R, the result
follows from [GVHH2S5, Proposition 2.1.11] after inverting p. If both M, N are strongly countably
Fréchet, write M = mz M; and N = l'£1j N as limits of Banach R-modules. Then by [GVHH25,

Proposition 2.4.10] gives have M ®§ﬂ ~ @w %@E& ~ @1” MiQAQRNj ~ @w MZ@RNj ~
M® rN . If instead [N is Banach (but not necessarily orthonormalizable!), we need to show M @%ﬂ =
@n M, ®E N. The proof of loc. cit.® shows it suffices to show the natural map (I, My) @% N ~

8We only need flatness of M and the M,,, not N.
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IL, (M ®% N ) is an isomorphism. Since all of the M,, are orthonormalizable, we have as in the
prOOfOfloc cit. (H @R) ®RN ~ (@IK ®K H K ®K R) ®RN ~ ®1K®KH K®KN ~

@IK ®K IL.N ~TI, @IK ®K N ~ T, @IR ®R N, where we have used over K that for two

countable collections of Banach spaces V;,,, W,, we have [[,, Vi, @7 [],, Wy =~ | — R Wy
(see [Bos23, proof of Proposition A.66]). B o

We now record facts about Fréchet spaces in the solid world that we will need in the main text.

Lemma A.2. Let Vi — V5 be a map of Fréchet spaces with dense image and let W be another
Fréchet space. Then Vi @2 W — Vo @5 W has dense image.

Proof. A version of this for Banach modules follows from [GvHH25, Lemma 2.4.5 and Lemma
A.1.7], so we use the case when V7, V5 and W are Banach spaces freely. So, we write 1} = l&nn Vin,
Vo = I‘&Hn Vopand W = @n W, all as sequential limits of Banach spaces with injective transition
maps with dense image. Reindexing if necessary, we may assume V7 — V5 induces maps Vi, — Vo,
for all n.

First, we want to prove that the inverse systems in the presentations V; @~ W = @n Vin QY W,
have injective transition maps with dense images. We factor V; ,,, QU W,, — Vin QY W,, as

Vim @ Wiy = Vi @7 W, = Vi @7 W,

Injectivity and density of the image then follows (the latter by applying the Banach space case of the
lemma twice). It then follows that V; @~ W has dense image in V; , @Y W, for all n.

With this, we return to proving the statement of the Lemma. Using Lemma A.3, V; ®° W —
Vo @Y W has dense image if and only if V} QUW — Van @Y W,, has dense image for all n. Now
the latter map factors through V7 ,, @ W,, and V; @= W — Vin ® Wy, has dense image (by above),
so V4 @ W has dense image in V5 ), @ W, if and only if V1, QUW,, — Von @ W,, has dense
image. But this is now the Banach space case, finishing the proof. ([l

Lemma A3, Let V = @n V. be a Fréchet space, written as an inverse limit of Banach spaces V,
with injective transition maps with dense image. Then a subset X C V is dense if and only if it is
dense in 'V, for all n.

Proof. V is dense in V,, for all n, so if X is dense in V then it is also dense in V), for all n. For the
converse, let | — |,, be a norm on V;,; without loss of generality we may assume that |v|,, < |v|,41 for
all n. Then the topology on V' is induced by the metric

o0
- |z — yln
d(z,y) = 27— 7
From this, it is easy to see that if X is dense in V,, for all n, then X is dense in V. O

Lemma A.4. Let (Vn)n be an inverse system of Fréchet spaces such that V,,, — V,, has dense image
forallm > n. Then R’ @n Vn=0fori>1.
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Proof. We follow Bosco’s proof. By [Sch13, Lemma 3.18], it suffices to check that, for any extremally
disconnected profinite set .S, the system of abelian groups (Map(S, V,,)),, satisfies

R'lim Map($, V;,) = 0.

This, in turn, is implied by the topological Mittag-Leffler criterion, if Map(S, V,,,) — Map(S, V,,) is
a map of Fréchet spaces with dense image for all m > n. So let’s prove this.

Let X be a Fréchet space with translation invariant complete metric dx, and let .S be a compact
Hausdorff space. The set Map(S, X) inherits a vector space structure from X and has the metric of
uniform convergence, given by

d(f,g) =supdx (f(s),9(s)),

seS

which is complete (a uniform limit of continuous functions is continuous) and translation invariant
since dx is. So Map(S, X) is a Fréchet space. Moreover, if S is profinite then any S — X can be
approximated to arbitrary precision by a locally constant function. Write LC'(S, X) for the subspace
of locally constant functions.

Now assume that S is profinite and that X — Y is continuous linear map of Fréchet spaces
with dense image. Then LC(S, X) — LC(S,Y) clearly has dense image, and thus Map(S, X) —
Map(.S,Y') has dense image. O

Remark A.5. The proof above is in the “old” solid setting: To prove that R’ @n Fn=0fori >1
for a system F,, of sheaves on a site, [Sch13, Lemma 3.18] asks for a basis of elements .S the site
satisfying H'(S, F,,) = 0 and R'lim F,(S) = 0 for all n.and ¢ > 1. In the old solid setting, the
extremally disconnected sets are projective and hence automatically satisfy the first condition, leaving
us to check the second condition.

In the light setting, one no longer has any projective object. Instead, one can prove the following:
If M is any light solid abelian group and S is any light profinite set, then H*(S, M) = 0 fori > 1.
To see this, we write

H(S, M) = Ext!(Z[S], M) = Ext(Z[S]", M),

where the first Ext is in light condensed abelian groups and the second is in light solid abelian groups,
using that —" is the left adjoint to the inclusion functor and that Z[S] is acyclic for —". To finish,
one uses that Z[S]™ is a projective solid abelian group (all of these facts are in Rodriguez Camargo’s
notes on solid abelian groups). This allows one to prove Lemma A.4 in the light setting.

We quickly compare this to the “usual” topological Mittag-Leffler criterion: if X, is an inverse
system of complete metric spaces (and abelian groups...) with uniformly continuous transition maps,
and X,,, — X, has dense image for all m > n, then R’ @n X, = 0for¢ > 1. Fréchet spaces satsify
this, since any continuous linear map between Fréchet spaces is uniformly continuous.
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